Utilities#
Utilities include convenience functions for working with augmenters.
augmenty.span.util#
Utility functions for the package.
- augmenty.util.augmenters() Dict[str, Callable[[Language, Example], Iterator[Example]]] [source]#
A utility function to get an overview of all augmenters.
- Returns:
Dictionary of all augmenters
Example: >>> augmenters = augmenty.augmenters() >>> “upper_case_v1” in augmenters True
- augmenty.util.docs(docs: Iterable[Doc], augmenter: Callable[[Language, Example], Iterator[Example]], nlp: Language) Iterator[Doc] [source]#
Augments an iterable of spaCy Doc.
- Parameters:
docs – A iterable of spaCy Docs
augmenter – An augmenter
nlp – A spaCy language pipeline.
- Returns:
An iterator of the augmented Docs.
- Yields:
Doc – The augmented Docs.
Example
>>> from spacy.tokens import Doc >>> from spacy.lang.en import English >>> nlp = English() >>> docs = [Doc(words=["Fine", "by", "me"])] >>> augmenter = augmenty.load("upper_case_v1", level=1) >>> augmented_docs = augmenty.docs(docs, augmenter, nlp)
- augmenty.util.keyboards() List[str] [source]#
A utility function to get an overview of all keyboards.
- Returns:
List of all keyboards
Example: >>> keyboards = augmenty.keyboards()
- augmenty.util.load(augmenter: str, **kwargs: Any) Callable[[Language, Example], Iterator[Example]] [source]#
A utility functionload an augmenter.
- Returns:
Dictionary of all augmenters
Example: >>> from spacy.lang.en import English >>> nlp = English() >>> upper_case_augmenter = augmenty.load(“upper_case_v1”, level = 1) >>> texts = [“hello there!”] >>> list(augmenty.texts(texts, upper_case_augmenter, nlp)) [“HELLO THERE!”]
- augmenty.util.meta() Dict[str, dict] [source]#
Returns a a dictionary containing metadata for each augmenter.
- Returns:
A dictionary of meta data
Example: >>> metadata = augmenty.meta() >>> metadata[“token_swap_v1”]
- augmenty.util.texts(texts: Iterable[str], augmenter: Callable[[Language, Example], Iterator[Example]], nlp: Language) Iterable[str] [source]#
Augments an list of texts.
- Parameters:
texts – A iterable of strings
augmenter – An augmenter
nlp – A spaCy language pipeline.
- Returns:
An iterator of the augmented texts.
- Yields:
The augmented text.