Visualizers#
asent.visualize#
- asent.visualize.visualize(doc: Union[Span, Doc, DocPolarityOutput, SpanPolarityOutput], style: Literal['prediction', 'analysis', 'prediction-no-overlap', 'sentence-prediction'] = 'prediction', cmap: str = 'RdYlGn') str [source]#
Render displaCy visualisation of model prediction of sentiment or analysis of sentiment.
- Parameters:
doc – The span or document you wish to apply the visualizer to.
style –
A string indicating whether it should visualize “prediction” or “analysis”.
”prediction”, color codes positive or negative spans according to the cmap.
- ”analysis” visualize for each sentimental word whether it has been negated or intensified by a word, and which words.
it also shows the valence of each word, both raw and taking into account negation and intensification.
”sentence-prediction”, same as “prediction” but for each sentence instead of per. word.
If you are looking for the previous visualizer for “prediction”, use “prediction-no-overlap”. Note that this does not allow for overlapping spans and thus it can lead to odd results.
cmap – The color map derived from matplotlib.
- Returns:
Rendered HTML markup.
Examples
>>> nlp = spacy.load("en_core_web_lg") >>> # add the rule-based sentiment model >>> nlp.add_pipe("asent_en_v1") >>> # try an example >>> text = "I am not very happy" >>> doc = nlp(text) >>> # visualize model prediction >>> asent.visualize(doc, style="prediction") >>> asent.visualize(doc, style="analysis")
- asent.visualize.visualize_sentence_prediction(document_obj: Union[Span, Doc, DocPolarityOutput, SpanPolarityOutput], cmap: str = 'RdYlGn') str [source]#
Render displaCy visualisation of model prediction of sentiment.
- Parameters:
document_obj – The span or document you wish to apply the visualizer to.
cmap – The color map derived from matplotlib.
- Returns:
Rendered HTML markup.